A note on T_0 Domination

Annie Sabitha Paul¹ and Raji Pilakkat² ¹Assistant Professor in Mathematics,, Government Engineering College, Kannur, Affiliated to APJ Abdul Kalam Technological University, 670563, Kerala, India, Email: anniesabithapaul@gmail.com ² Professor, Department of Mathematics, University of Calicut, Thenhippalm – 673635, Kerala, India, Email: rajipilakkat@gmail.com

Abstract- A set $D \subseteq V$ of a graph G(V, E) is called a dominating set if every vertex in G is either in D or is adjacent to an element of D. A simple graph G is said to be T_0 , if for any two distinct vertices u and v of G, either one of u and v is isolated or there exists an edge e such that either e is incident with u but not with v or e is incident with v but not with u. If $\langle D \rangle$ of a dominating set D of the graph G is a T_0 graph, then it is called a T_0 dominating set and if $\langle D \rangle$ is both connected and T_0 , then it is called a connected T_0 dominating set. The minimum cardinality of all T_0 dominating sets and connected T_0 dominating sets are respectively called T_0 domination number and connected T_0 domination number and are denoted respectively by $\gamma_{T_0}(G)$ and $\gamma_{cT_0}(G)$. In this paper T_0 domination number and connected T_0 domination number are introduced and some results on these new parameters are established.

Keywords- Domination number, T_0 domination number, connected T_0 domination number

1 INTRODUCTION

Graphs G = (V(G), E(G)) discussed in this paper are finite, simple and undirected. Any undefined term in this paper may be found in [1,4]. The degree [1] of a vertex v in graph G is denoted by $d_G(v)$ (or d(v) if no specification of the graph G is needed), which is the number of edges incident with v. The maximum degree of G is denoted by $\Delta(G)$. The complement \overline{G} of graph G[5] has $V(\overline{G}) = V(G)$ and $uv \in E(\overline{G})$ if and only if uv is not in E(G). For a graph G, the number of vertices is called the order [5] of G and is denoted by o(G). An empty graph [1] is a graph with no edges. An isolated vertex [4] is one whose degree is zero. A vertex in a graph is called a pendant vertex [6] if its degree is one. Any vertex adjacent to a pendant vertex is called a support vertex. A simple graph in which each pair of distinct vertices is joined by an edge is called a complete

graph [1]. A complete graph on n vertices is denoted by K_n . A bipartite graph G is one whose vertex set can be partitioned into two subsets X and Y so that each edge has its ends in X and Y respectively. Such a partition (X,Y) is called a bipartition of G. A complete bipartite graph [1] is a simple bipartite graph with bipartition (X,Y) in which every vertex of Xis joined to every vertex of Y.

The complete bipartite graph with |X| = m and |Y| = n is denoted by $K_{m,n}$. The graph H is said to be an induced sub graph [2] of the graph G if $V(H) \subseteq V(G)$ and two vertices in H are adjacent if and only if they are adjacent in G. A tree [1] is a connected acyclic graph. A cut edge [1] of a graph Gis an edge such that whose removal makes the graph disconnected. The open neighborhood [5] of v in V(G) consists of those vertices adjacent to v in Gand it is denoted by N(v). The closed neighborhood

International Journal of Research in Advent Technology, Vol.7, No.2, February 2019 E-ISSN: 2321-9637 Available online at www.ijrat.org

[5] of v is $N[v] = N(v) \bigcup \{v\}$. A matching [1] in a graph is a set of pair wise nonadjacent edges. Let G = (V, E) be a graph. A set $D \subseteq V$ is called a dominating set [5] if every vertex in G is either in D or is adjacent to an element of D. The minimum cardinality of all dominating sets in G is called the domination number and is denoted by $\gamma(G)$. Different types of dominating sets have been studied by imposing conditions on the dominating sets. A detailed survey can be found in [5]. A dominating set D is called an independent dominating set [3] if $\langle D \rangle$ is the empty graph. A dominating set D is called a connected dominating set [7] if $\langle D \rangle$ is connected. The corresponding minimum cardinality of independent dominating set and connected dominating set are respectively called independent domination number and connected domination number and are denoted respectively by i(G) and $\gamma_c(G)$.

In [8], V Seena and Raji Pilakkat defined the T_0 Graph as follows. A simple graph G is said to be T_0 , if for any two distinct vertices u and v of G, one of the following hold

1. At least one of u and v is isolated.

2. There exists an edge e such that either e is incident with u but not with v or e is incident with v but not with u.

In this paper, a new domination parameter, T_0 domination number is introduced and some of its properties are studied. A T_0 dominating set is a dominating set $D \subseteq V$ such that $\langle D \rangle$ is T_0 . Also it is proved that every independent dominating set in a graph is T_0 dominating. So that every graph has a T_0 dominating set. Hence the property of T_0 domination is applicable to all simple graphs.

2 T_0 **Domination**

T_0 domination is defined as follows.

Definition 2.1. Let G be any finite undirected simple graph with vertex set V. A dominating set $S \subseteq V$ is said to be T_0 dominating if $\langle D \rangle$ is a T_0 graph. The minimum cardinality of all such T_0 dominating sets is called T_0 domination number and is denoted by $\gamma_{T_0}(G)$. Such a T_0 dominating set with cardinality $\gamma_{T_0}(G)$ is called a γ_{T_0} -set. Seena V and Raji P [8] proved that a graph G is T_0 if and only if K_2 is not a component of G. A characterization property of a T_0 dominating set follows directly from this result.

Theorem 2.1. Let G = (V, E) be any graph. A dominating set $S \subseteq V$ is a T_0 dominating set if and only if no component of $\langle S \rangle$ is K_2 .

Theorem 2.2. For any graph G, every independent dominating set is T_0 dominating.

Proof. Let $I \subseteq V$ be an independent dominating set of a graph G = (V, E). Since K_2 is not a component of $\langle I \rangle$, $\langle I \rangle$ is a T_0 graph. \Box

Corollary 2.3. For any graph G, $\gamma(G) \leq \gamma_{T_0}(G)$

Remark 2.4. The converse of Theorem 2.2 need not be true. For example the set of all darkened vertices shown in figure 1 is T_0 dominating but not independent. Here $\gamma_{T_0}(G) = 3$ and i(G) = 5.

Figure 1-G

Theorem 2.5. For any positive integer k, there exist a graphs G such that $i(G) - \gamma_{T_0}(G) = k$

Proof. Consider the path P_3 . Let G be the graph obtained from P_3 by attaching exactly j pendant edges to each vertex of P_3 , where $j \ge 2$. Then $\gamma_{T_0}(G) = 3$ and i(G) = 3 + (j-1) when $j \ge 2$, Therefore $i(G) - \gamma_{T_0}(G) = j - 1$. Since $j \ge 2$, $i(G) - \gamma_{T_0}(G) = k$, k = 1, 2, 3... Theorem 2.6 characterizes graphs $\gamma_{T_0}(G) = 1$ $\gamma_{T_0}(G) = 2, \ \gamma_{T_0}(G) = n-1 \text{ and } \gamma_{T_0}(G) = n.$

Theorem 2.6 Let G be any graph on n vertices. Then

1.
$$\gamma_{T_0}(G) = 1$$
 if and only if $\Delta(G) = n - 1$
2. $\gamma_{T_0}(G) = 2$ if and only if $i(G) = 2$
3. $\gamma_{T_0}(G) = n$ if and only if $G = \overline{K}_n$
4. $\gamma_{T_0}(G) = n - 1$ if and only if $G \cong K_2$

or
$$G \cong K_2 \bigcup \overline{K}_{n-2}$$

Proof. (1) is obvious.

(2) Suppose that $\gamma_{T_0}(G) = 2$. Let $D \subseteq V(G)$ be a γ_{T_0} -set. Then |D| = 2 and $\langle D \rangle$ is empty. Hence D is independent dominating. Also since $\gamma_{T_0}(G) \leq i(G)$, it follows that i(G) = 2. Conversely, let i(G) = 2. If $\gamma_{T_0}(G) \neq 2$, then by Corollary 2.3, $\gamma_{T_0}(G) = 1$. Then the γ_{T_0} -set is also independent dominating, contradicting i(G) = 2. Hence $\gamma_{T_0}(G) = 2$.

(3) Let $\gamma_{T_0}(G) = n$. Then every γ_{T_0} -set Dcontains every vertices of G and hence $\langle D \rangle = G$. Also since $\gamma_{T_0}(G) \le i(G)$ and o(G) = n, i(G)

must be n. Hence $G = \overline{K_n}$. The converse is obvious.

(4) If $G = K_2$ or $K_2 \cup \overline{K}_{n-2}$, then $\gamma_{T_0}(G) = n-1$. Conversely suppose that $\gamma_{T_0}(G) = n-1$.

Case (i) *G* is connected. If $\Delta(G) = 0$, then since *G* is connected, $G \cong K_1$ and therefore $\gamma_{T_0}(G) = 1 = n$. If $\Delta(G) = 1$, then since *G* is connected, *G* has exactly two vertices and $G \cong K_2$.

Therefore $\gamma_{T_0}(G) = n-1$. If $\Delta(G) \ge 2$, then $i(G) \le n - \Delta(G)$ and hence we have the following $\gamma_{T_0}(G) \le n - \Delta(G) \le n - 1$, by Corollary 2.3.

Therefore K_2 is the only connected graph with $\gamma_{T_0}(G) = n - 1$.

Case (ii) *G* is disconnected. If $\Delta(G) = 0$ or if $\Delta(G) \ge 2$, then $\gamma_{T_0}(G) = n$ or less than or equal to $n - \Delta(G)$ respectively. Therefore, $\gamma_{T_0}(G) = n - 1$ if and only if $\Delta(G) = 1$. In this case, the only nontrivial connected component of *G* are K_2 . Suppose that *r* components of *G* are K_2 . Then we have, $1 \le r \le \left\lceil \frac{n}{2} \right\rceil$ and $\gamma_{T_0}(G) = n - r$. Thus $\gamma_{T_0}(G) = n - 1$ if and only if n - r = n - 1. i.e., if and only if r = 1.

Corollary 2.7. Let *G* be a graph of order *n* with $\Delta(G) > 0$. If *G* is distinct from any of the graphs $K_2 \bigcup nK_1$ where n = 1, 2, 3... then $\gamma_{T_0}(G) \le n - 2$. Further equality holds for $G = P_4$ and C_4

Theorem 2.8. Let G be any nontrivial connected graph of order n, then

$$\gamma_{T_0}(G) + \gamma_{T_0}(\bar{G}) \le 2n - 1 \tag{1}$$

$$\gamma_{T_0}(G)\gamma_{T_0}(\bar{G}) \le n(n-1) \tag{2}$$

Further equality holds if and only if $G \cong K_2$.

Proof. If $G = K_1$ then $\gamma_{T_0}(G) = \gamma_{T_0}(\overline{G}) = n$. There are no nontrivial graphs for which $\gamma_{T_0}(G) = \gamma_{T_0}(\overline{G}) = n$. Therefore, $\gamma_{T_0}(G) + \gamma_{T_0}(\overline{G}) \le 2n - 1$ and $\gamma_{T_0}(G)\gamma_{T_0}(\overline{G}) \le n(n-1)$.

Furthermore, equality holds in (1) and (2) if and only if either $\gamma_{T_0}(G) = n$ and $\gamma_{T_0}(\overline{G}) = n - 1$

or
$$\gamma_{T_0}(G) = n - 1$$
 and $\gamma_{T_0}(\overline{G}) = n$.

By Theorem 2.6, this is true if and only if $G \cong K_2$ or $\overline{G} \cong K_2$.

Theorem 2.9. For any graph G, if i(G) = 3 then $\gamma_{T_0}(G) = 3$

Proof. Let i(G) = 3 and let $S \subseteq V(G)$ be a T_0 dominating set with |S| < 3. Since a connected graph

with two vertices is not T_0 , S is an independent dominating set, a contradiction.

Remark 2.10. The converse of Theorem 2.9 need not be true. For example in figure.1, $\gamma_{T_0}(G) = 3$ but i(G) = 5.

Theorem 2.11. For complete bipartite graphs $K_{m,n}$,

$$\gamma_{T_0}(K_{m,n}) = \begin{cases} 1 & \text{if } m = 1 \text{ or } n = 1 \\ 2 & \text{if } m = 2, n \ge 2 \text{ or } n = 2, m \ge 2 \\ 3 & \text{if } m > 2, \quad n > 2 \end{cases}$$

Proof. Case (i) If either m or n is one, then $\Delta(G) = o(G) - 1$. Hence $\gamma_{T_0}(G) = 1$ by Theorem 2.6 Case (ii) If one of m or n is exactly 2, then i(G) = 2. Hence by Theorem 2.6, $\gamma_{T_0}(G) = 2$. Case (iii) Since $\gamma_{T_0}(K_{m,n}) = 2$, and since $\gamma(G) \leq \gamma_{T_0}(G)$ for any graph G, we have, $\gamma_{T_0}(K_{m,n}) \ge 2$. Let U, V be the two partite set of $K_{m,n}$. If we take two vertices from the same partite set say U of $K_{m,n}$, then they will not dominate other vertices of U and if we take one vertex from U and other vertex from V then these two vertices dominate K_{mn} but the sub graph induced by these vertices is isomorphic to K_2 , which is not a T_0 graph. Therefore, $\gamma_{T_0}(K_{m,n}) \ge 3$. The choice of any two vertices from one partite set and a third vertex from the other one dominate $K_{m,n}$ and their span is P_3 , which is T_0 . Hence the theorem. \Box

Corollary 2.12. For $K_{m,n}$, $\gamma_{T_0}(K_{m,n}) \leq 3$ for all values of m and n.

Remark 2.13. If $G = K_{m,n}$; $m \ge 4, n \ge 4$ then, $\gamma(G) < \gamma_{T_0}(G) < i(G)$.

Theorem 2.14. If G is a connected graph of order \geq 2, which contain no K_3 as an induced subgraph, then $\gamma_{T_0}(\overline{G}) = 2$

Proof. Since G is a connected graph of order ≥ 2 , it contains at least an edge say uv. If o(G) = 2 then

G is isomorphic to K_2 and \overline{G} is isomorphic to \overline{K}_2 Therefore, $\gamma_{T_0}(\overline{G}) = 2$. If o(G) > 2, then no vertex of *G* is adjacent to both *u* and *v*, because *G* is triangle free. Therefore every vertex in *G* which are adjacent to *u* are dominated by *v* in \overline{G} and those vertices adjacent to *v* in *G* are dominated by *u* in \overline{G} and all vertices which are non adjacent to both *u* and *v* are dominated by both *u* and *v* in *G*. So $\{u, v\}$ forms an independent dominating set of *G*. Hence $\gamma_{T_0}(\overline{G}) \leq 2$. Now let if possible $\gamma_{T_0}(\overline{G}) = 1$, then *G* would have an isolated vertex, a contradiction. Which proves $\gamma_{T_0}(\overline{G}) = 2$.

Theorem 2.15. Let G(V, E) be any graph. Then for any T_0 dominating set $D \subseteq V$ of G, $\langle D \rangle$ can never be a matching of G.

Proof. Suppose if possible, $D \subseteq V$ be a T_0 -dominating set of G such that, $\langle D \rangle$ is a matching of G. Then $\langle D \rangle$ consists of disconnected edges. That is, $\langle D \rangle$ has K_2 as a component, a contradiction to D is a T_0 -dominating set of G.

3 Connected T_0 Domination.

Definition 3.1. Let G = (V, E) be any graph. A dominating set $S \subseteq V$ is called a connected T_0 dominating set, if $\langle S \rangle$ is both connected and T_0 . The minimum cardinality of all connected T_0 dominating sets is denoted by $\gamma_{cT_0}(G)$ and is called the connected T_0 domination number of G. Any connected T_0 dominating set with cardinality $\gamma_{cT_0}(G)$ is called a γ_{cT_0} -set of G.

Observation 3.1. For any connected graph G, $\gamma_c(G) \leq \gamma_{cT_0}(G)$. This inequality is sharp for P_4

Theorem 3.2. Let *G* be any connected graph with $\gamma_c(G) \neq 2$ then $\gamma_{cT_0}(G) = \gamma_c(G)$

Proof. Since $\gamma_c(G) \neq 2$, the graph induced by any γ_c -set is not K_2 and hence the γ_c -set is connected T_0 dominating. Also since $\gamma_c(G) \leq \gamma_{cT_0}(G)$, it follows that $\gamma_{cT_0}(G) = \gamma_c(G)$.

Theorem 3.3. Let *a* and *b* be two positive integers with a > 2 and $b \ge 2a + 2$. Then there is a graph *G* on *b* vertices with $\gamma(G) = \gamma_c(G) = \gamma_{cT_0}(G) = a$ and $i(G) \ge a + 1$.

Proof. Consider the path $P = (u_1, u_2, ..., u_a)$ on a vertices. Let $b \ge 2a + r$, $r \ge 2$. Let G be the graph obtained from P by attaching two or more pendant edges at u_1 and u_2 and one pendant edge at each $u_i, i \ge 3$. Let $v_i, i \ge 3$ be the pendant vertices attached to $u_i, i \ge 3$. Clearly $D = \{u_1, u_2, ..., u_a\}$ is a γ -set which is also a connected T_0 dominating set. Hence $\gamma(G) = \gamma_c(G) = \gamma_{cT_0}(G) = a$. Any independent dominating set of G of minimum cardinality will be one among the following. $\{u_i, v_3, v_4, ..., v_a\} \bigcup N(u_j)$ where u_i is the vertex of maximum degree among u_1 and u_2 and $N(u_j)$ is the open neighborhood of u_1 or u_2 with minimum cardinality such that $i \ne j$

or
$$\{u_1, u_3, v_4, u_5, v_6...\} \cup N(u_2)$$

if $d(u_1) \ge d(u_2)$ and $|N(u_2)| \le |N(u_1)|$
or $\{u_2, v_3, u_4, v_5, u_6...\} \cup N(u_1)$
if $d(u_2) \ge d(u_1)$ and $|N(u_1)| \le |N(u_2)|$.

In all these cases the cardinality of the i-set is

 $(a-1) + \min \{ d(u_1), d(u_2) \},\$ where $\min \{ d(u_1), d(u_2) \} \ge 2.$

Therefore
$$i(G) \ge a+1$$
.

Theorem 3.4. Let T be any tree of order $n, n \ge 4$. If T is not isomorphic to $K_{1,n-1}$ then $\gamma_{cT_0}(\overline{T}) = 3$.

Proof. Since T is not isomorphic to $K_{1,n-1}$ (a star graph), $\Delta(T) \le n-2$. Consider the following cases.

Case (i) T is not a path. Since T is not a path, it has at least three pendant vertices say v_1, v_2 and v_3 . Therefore, $d_{\overline{T}}(v_i) = n-2, i = 1,2,3$. Also since T is not a star, the support vertex of at least one of the v_i will be different from support vertices of the other two. Therefore $\{v_1, v_2, v_3\}$ forms a dominating set of \overline{T} . In \overline{T} , $\langle \{v_1, v_2, v_3\} \rangle$, the graph induced by $\{v_1, v_2, v_3\}$ is either K_3 or P_3 . Hence $\{v_1, v_2, v_3\}$ is a connected T_0 dominating set of \overline{T} . So that $\gamma_{cT_0}(\overline{T}) \leq 3$. Since T has no isolated vertices, $\gamma_{cT_0}(\overline{T})$ cannot be one.

Also since there are no connected T_0 dominating sets of cardinality two, $\gamma_{cT_0}(\overline{T}) \ge 3$. Hence it follows that $\gamma_{cT_0}(\overline{T}) = 3$.

Case (ii) T is a path P_n on n vertices, $n \ge 4$.

Let v_1 and v_2 be the pendant vertices and v_3 be any one of the support vertices.

Then
$$d_{\overline{T}}(v_i) = n-2, i = 1, 2$$

and $d_{\overline{T}}(v_3) = n-3$.

In \overline{T} , the subgraph induced by $\{v_1, v_2, v_3\}$ is P_3 and it forms a connected T_0 dominating set of \overline{T} . Hence by the same reasoning as in case (i), it follows that $\gamma_{cT_0}(\overline{T}) = 3$.

Corollary 3.5. Let T be a tree of order > 1, then T has a connected T_0 dominating set if and only if T is not a star.

Proof. If T is a star on n > 1 vertices, then T is disconnected. Hence \overline{T} cannot have a connected T_0 dominating set. Conversely, let T be a tree, which is not a star. Then $n \ge 4$. Therefore by Theorem 3.4,

T has a connected
$$T_0$$
 dominating set.

Proposition 3.6. Let G be a bi-star B(m, n) on p vertices, then $\gamma_{cT_0}(G) = p - \max\{m, n\}$

Theorem 3.7. [7] For any tree T of order p, the connected domination number of T = p - e, where e is the number of pendant vertices in T

International Journal of Research in Advent Technology, Vol.7, No.2, February 2019 E-ISSN: 2321-9637

Available online at www.ijrat.org

REFERENCES

Theorem 3.8. Let T be any tree. Then the γ_c -set and γ_{T_0} -set are the same if and only if T is not a bistar

Proof. Let T be a tree on p vertices. Assume that the γ_c -set and γ_{T_0} -set are the same. Suppose if possible, T is a bi-star.

Then by Theorem 3.7, $\gamma_c(T) = p - e = 2$, where, eis the number of pendant vertices. So that the graph induced by the γ_c -set is K_2 , which is not T_0 .

By Proposition 3.6 and Theorem 3.7, if T is a bi-star, then $\gamma_c(T) \neq \gamma_{cT_0}(T)$.

We conclude with a conjecture.

Conjecture 3.8. There are no simple graphs G for which $\gamma_{T_0}(G) > \gamma(G)$

- [1] Bondy J. A, Murty U.S.R. (2008): Graph Theory ; Springer
- [2] . G. Chartrand, P. Zhang (2009) Chromatic Graph Theory ; CRC Press, USA
- [3] E.J. Cockayne and S.T. Hedetniemi (1974) Independence graphs. Congr. Numer..X: 471-491
- [4] F. Harary, Graph Theory (1969) Addison Wesley
- [5] W.Haynes, Stephen Hedetniemi, Peter Slater (1998) Fundamentals of Domination in Graphs ; Marcel Dekker Inc
- [6] K.R Parthasararhy (1994) Basic Graph theory ; McGraw-Hill Pub., USA
- [7] E. Sampathkumar (1979) The connected domination number of a graph ; J. Math. Phy. Sci. volume 13, 607-613
- [8] Seena.V, Raji Pilakkat (2016) T_0 Graphs ; International Journal of Applied Mathematics, 29(1), 145-153